Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Parasit Dis ; 48(1): 141-149, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38440755

RESUMEN

Trichinosis is a serious parasitic zoonotic disease caused mainly by Trichinella spiralis. The used drugs for treatment of trichinosis showed limited bioavailability and high degree of resistance. Moreover, they have a very poor effect in treatment of encysted larvae. Therefore, there is a need for development of new agents which help in improving the bioavailability of the used drugs and enable them to reach different tissues. This study was designed to assess the use of chitosan nanoparticles (CSNPs) in conjugation with full and half dose albendazole (ABZ) in treatment of intestinal and muscular trichinosis. Albino mice (84 mice) were used to evaluate the efficacy of drugs and divided into seven groups; I: control, II: ABZ (50 mg/kg) treated, III: ABZ (25 mg/kg) treated, IV: ABZ (50 mg/kg) conjugated CSNPs treated, V: ABZ (25 mg/kg) conjugated CSNPs treated, VI: CS treated and VII: CSNPs treated. Parasitological and histopathological examinations were used to evaluate the therapeutic efficacy of the used drugs. Results showed significant reduction of adult Trichinella extracted from intestine of all ABZ treated groups either conjugated or not with the highest reduction rate in group IV followed by group V with percentage of reduction of 99.33% and 98.11%, respectively and marked improvement of histopathological examination. Also, results showed significant reduction of Trichinella larvae extracted from muscles of group IV, V and VII with the highest reduction rate in group IV with percentage of reduction of 100% in muscle larvae and marked improvement of histopathological examination. It was concluded that albendazole full dose conjugated chitosan nanoparticles can be a good candidate drug for treating both intestinal and muscular trichinosis.

2.
J Parasit Dis ; 41(3): 831-836, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28848287

RESUMEN

Increasing prevalence of Cryptosporidium raises the importance to explore different aspects of its infection. In the absence of reproducible in vitro culturing, animal model is the only experimental method to study Cryptosporidium. Our study evaluated Cryptosporidium infection using coproscopy, copro-antigen and copro-DNA for early detection of murine cryptosporidiosis. Hundred and forty albino mice (neonates and adult) were divided into two groups, control group received sterile PBS solution, and infected groups were inoculated with molecularly characterized Cryptosporidium parvum oocysts and further subdivided into three subgroups for infectious dose response detection. Mice fecal samples were collected every 4 h on the first day and then daily and examined for fecal oocysts, copro-antigen and copro-DNA. Four mice from each subgroup were killed at 12, 24 and 48 h post-infection (P-I), and their intestines were examined for cryptosporidial mucosal DNA. Cryptosporidium copro-antigen and copro-DNA were detected 4 and 8 h P-I in infected neonatal and adult mice, respectively, and intestinal mucosal DNA was detected after 12 h in both. Microscopy was able to detect oocysts 48 h P-I. Inoculated C. parvum oocysts were recovered in feces of infected mice without genotypic changes. Neonate mice showed higher susceptibility for cryptosporidial infection than adults without statistical differences for the given infectious doses. Both copro-immunoassay and copro-nPCR assays can early detect Cryptosporidium infection; however, nPCR was able to identify Cryptosporidium species, making nPCR a reliable biomarker for early detection in murine model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA